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�is is the �rst of three chapters focusing on statistical techniques for inferring 
and quantifying social transmission in groups of animals in the wild, or in “cap-
tive” groups of animals in naturalistic social environments. Here we focus on 
techniques for analyzing time- structured data on the occurrence of a particular 
behavior pattern, or behavioral trait, in one or more groups. For the most part 
we focus on cases where a novel trait spreads through one or more groups. Fol-
lowing standard terminology in the �eld of social learning, we refer to the spread 
of a trait through a group as a di�usion, and the resulting data as di�usion data 
(regardless of whether there is evidence for social transmission). Such data may 
arise if the spread of a naturally occurring trait is recorded, or for di�usions that 
are initiated by a researcher, by presenting some kind of task (for nonhumans, 
usually a foraging task) that members of a group must learn to solve (see sections 
3.2.2 and 7.2.1). �e study of di�usion data is likely to be of crucial importance if 
researchers are to understand how and when novel innovations spread and give 
rise to traditions.

�e level of detail of di�usion data varies. At one extreme, a researcher might 
possess a complete history of each individual’s performance of the trait, along 
with a history of its observations of others’ trait performances. Such data poten-
tially allow rich inferences to be made about the social learning strategies (box 
8.2) and mechanisms (J. R. Kendal et al. 2007; Hoppitt et al. 2012; see box 4.2) 
being utilized. However, this is perhaps only likely for captive groups, or for the 
di�usion of the solution to a task in which every manipulation of the task can be 
monitored closely. More commonly, a researcher might only have an estimate of 
when each individual �rst performed the trait, with an associated indirect assay 
of who is likely to have observed whom. In such cases, one can view individuals as 
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106 Chapter 5

moving from a naïve state in which they do not perform the trait, to an informed 
state, through acquisition of the trait by means of either asocial learning or social 
transmission of the trait from an informed individual (or both). A researcher can 
then use a model in which the rate of trait acquisition is modeled (section 5.2). 
In other cases, a researcher may not be able to identify individuals in the popula-
tion at all, and only have an estimate of how many individuals have performed 
the trait so far (section 5.1). Finally, we look at how social transmission can be 
inferred from the spread of a behavioral trait through space.

5.1 Diffusion Curve Analysis

A di�usion curve is a plot of the number of individuals observed to have per-
formed a behavioral trait against time.1 For many years, in both the human and 
nonhuman social learning literature, it was believed that the shape of the di�u-
sion curve could be used to infer whether social transmission was involved in 
the spread of a behavioral trait. �e idea is that asocial learning proceeds at an 
approximately constant rate, resulting in an r- shaped di�usion curve. In contrast, 
if the trait is acquired by social transmission, the per capita rate of acquisition 
will increase as the number of demonstrators increases, giving an acceleratory 
curve (see �g. 5.1). If a complete di�usion is documented throughout the entire 
group or population in question, the di�usion curve is expected to be S- shaped, 
as it levels out with all individuals having acquired the trait. �e reason that social 
transmission is widely thought to generate an s- shaped curve is that it requires 
both demonstrators and observers, and when either are rare, as occurs early or 
late in the di�usion, the rate of spread is constrained; however, when both are 
common, as in the middle of the di�usion, the spread is at its most rapid. Di�er-
ent functional forms are �tted to the data, and their �t compared (see box 5.3), 
and social learning is inferred if acceleratory curves �t best.

Di�usion curve analysis has been used extensively to infer social transmission 
in both humans and nonhuman animals (J. Henrich 2001; Lefebvre 1995; Reader 
2004; E. Rogers 1995; Roper 1986). Lefevbre (1995) used this method to ana-
lyze 21 di�usions of foraging innovations from the primate literature, including 
cases from Japanese macaques (e.g., �sh eating; Watanabe 1989), vervet monkeys 
(acacia- pod dipping; Hauser 1988), and chimpanzees (mango and lemon eating; 
Takahata et al. 1986; Takasaki 1983). Lefevbre found an overall trend for accel-
erating learning rates, seemingly consistent with models of social transmission.

Unfortunately, recent work suggests that that the shape of the di�usion curve 
is not a reliable signature of social transmission (Laland and J. R. Kendal 2003; 
Reader 2004; Franz and Nunn 2009; Hoppitt, Kandler, et al. 2010). First, a num-
ber of researchers have pointed out that social learning will not necessarily result 

1 Sometimes a proxy for the number of informed individuals is used, such as the number of times a trait 
is seen being performed during a particular time period.
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in an S- shaped di�usion curve if the population is structured into subgroups. 
Laland and J. R. Kendal (2003) and Reader (2004) suggest that directed social 
learning can result in a step- shaped function, with acceleratory component parts, 
if the trait spreads more rapidly through closely connected subgroups, such as 
family units (e.g., Fritz et al. 2000). Furthermore, di�erences in the rate of acqui-
sition between di�erent subsections of the population might act to obscure any 
underlying pattern; for example, a strong sex di�erence might result in a bimodal 
distribution of latencies to acquire the trait (Reader 2004).

Perhaps even more of a concern, there are good reasons to expect that asocial 
learning alone can result in an S- shaped di�usion curve, even if populations are 
homogeneously structured. In general, any process that results in an increase 
with time in the rate at which individuals acquire the trait will result in an ac-
celeratory di�usion curve. For example, if the trait of interest is the solution 
to a novel foraging task that is presented to a group of animals, they will o�en 
display some neophobia to the task. If the e�ects of neophobia decrease over 
time, as we might expect, the rate at which individuals solve the task might also 
increase with time (Hoppitt, Kandler, et al. 2010). Acceleratory curves can also 
occur if an individual must move through a number of stages in order to acquire 
a trait. For example, there may be a number of di�erent steps required to solve a 
foraging task, such as defenses that need to be removed to access a fruit (Whiten 
1998). If the time to complete each step of the task is exponentially distributed, 
then we would expect the overall time to solve the task to follow an approxi-
mate gamma distribution, causing the di�usion curve to become more and more  
S- shaped as the number of task steps increases (Hoppitt, Kandler, et al. 2010). In 
conclusion, recent theoretical analyses suggest that researchers cannot reliably 
infer social learning from the shape of the di�usion curve (Reader 2004 gives 
further reasons for caution).
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Figure 5.1. Typical diffusion curves traditionally assumed to be characteristic of (a) asocial learning 
(r- shaped) and (b) social transmission (s- shaped). Recent theoretical work has cast doubts on these 
assumptions (see text).
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108 Chapter 5

5.2 Network- Based Diffusion Analysis (NBDA)

Network- based di�usion analysis (NBDA), pioneered by Franz and Nunn (2009), 
infers social transmission if the pattern of spread of a behavioral trait follows the 
connections of a social network. A social network is a social structure made up of 
individuals, sometimes called nodes, as well as the connections among them that 
represent forms of relationship or interdependency, such as patterns of associa-
tion, interaction, friendship, or kinship (Newman 2010). �e assumption here is 
that a trait will spread sooner between individuals who spend more time together 
than between less connected individuals. As such, NBDA inherently addresses 
the concern that the pattern of spread of a trait will be in�uenced by population 
structure. With social network analysis becoming increasingly popular in both 
the social (Wasserman and Faust 1994; Newman 2010) and biological (Cro� et al. 
2008) sciences, the appropriate data for applying NBDA to both human and non-
human populations is o�en likely to be available. NBDA, therefore, o�ers a viable 
alternative for inferring social transmission from di�usion data. �ough NBDA 
was developed recently in the �eld of animal social learning, similar methods 
had previously been developed in the social sciences. Here we start by describing 
NBDA in detail, before discussing how previous approaches relate to it.

Franz and Nunn’s original version (2009) of NBDA took as data the times at 
which individuals acquire a behavioral trait, which can be considered the time at 
which an individual was �rst observed performing the trait in question. Hoppitt, 
Boogert, and Laland (2010) introduced an alternative version of NBDA, which 
applies to the order in which individuals acquire the trait, but not the exact time. 
�ese alternative versions of NBDA have become known as time of acquisition 
di�usion analysis (TADA) and order of acquisition di�usion analysis (OADA), 
respectively. In both cases, the researcher �ts a model including a social transmis-
sion component, in which the rate of transmission between an informed and a 
naïve individual is proportional to the connection between them. If this model 
is better than a model without social transmission (see section 5.2.2), then this 
supports the hypothesis that the trait is transmitted through the social network. 
In box 5.1, we provide the mathematical and technical details underlying NBDA. 
Code to run NBDA in the R statistical environment (R Core Development Team 
2011) is available at http://lalandlab.st- andrews.ac.uk/freeware.html. Here we 
aim to provide a general guide to using NBDA for nonmathematical readers.

Each version of NBDA has its advantages and disadvantages. While TADA has 
more statistical power than OADA (Hoppitt, Boogert, and Laland 2010), espe-
cially when networks are relatively homogeneous, this comes at the cost of stron-
ger assumptions. In its original form (Franz and Nunn 2009), TADA assumes 
that the baseline rate of acquisition (the rate of acquisition in the absence of social 
transmission) remains constant over time. �is can result in false positives in the 
same circumstances as di�usion curve analysis (i.e., if the asocial acquisition rate 
increases over time, for example, as a result of a reduction in neophobia to a novel 
task). OADA is not vulnerable to such e�ects, making the weaker assumption that 
the baseline rate function is the same for all individuals being analyzed. However, 
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Hoppitt, Kandler, et al. (2010) extended TADA to accommodate a nonconstant 
baseline rate of acquisition. �ey suggested use of a baseline rate function cor-
responding to a gamma distribution of latencies under asocial conditions, which 
allows for a systematic increase or decrease in the asocial rate of acquisition over 
time. Nonetheless, OADA remains an attractive option if the baseline rate func-
tion is thought to follow a form that is di�cult to model, or if the researcher does 
not wish to make any assumptions regarding the shape of the function.

If the researcher chooses to use TADA, they also have the choice of treating 
time as a continuous variable (Hoppitt, Boogert, and Laland 2010), or splitting the 
di�usion period into a number of discrete units and specifying which individuals 
acquired the trait in each unit (Franz and Nunn 2009). In practice, the method 
will �t equivalent models if the number of time units used is large. Typically, 
computation speeds are faster for the continuous TADA, and we recommend that 
this method be used when exact times of acquisition are known. However, when 
this is not the case, the discrete TADA may be preferable. For example, data might 
be collected in a series of scans, where, at discrete points in time, the researcher 
ascertains which individuals are informed. In this case the researcher can only 
infer a time period during which each individual acquired the behavior, and so 
the discrete TADA is the natural choice.

Even if data is collected individually, in the �eld it seems likely that there will be 
observation errors in the recorded time of acquisition. Franz and Nunn (2010) �nd 
that this can result in type 1 errors in a discrete TADA when the time units are small 
(and so too, presumably, for the continuous TADA), but that if the length of time unit 
is long enough the problem is alleviated. Franz and Nunn provide a rule of thumb 
that there should be at least a 50% probability that an individual who has acquired 
the trait will be observed performing it within any given time unit. A researcher 

Does the baseline rate vary in a way
that is possible to model (for example,

a systematic increase or decrease?)

Are exact times of
acquisition known?

Continuous TADADiscrete TADAOADA

Is it safe to assume the
baseline rate is constant?

No

No

Yes*

Yes†

No Yes

Figure 5.2. Flowchart for selecting the appropriate NBDA model. *Researchers should be cautious in as-
suming the baseline rate of acquisition is constant, because a number of factors can cause increases in 
the rate (see Hoppitt, Kandler, et al. 2010). †In principle, any function can be used to model the baseline 
rate. However, the software provided on our website only allows for a systematic increase or decrease. 
In cases where environmental variables are thought to unpredictably influence the rate of acquisition, 
but for all individuals in the same way, TADA becomes intractable, whereas OADA remains appropriate 
(see Hoppitt, Boogert, and Laland 2010). Based on figure 2 in Hoppitt and Laland (2011).
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Box 5.1 
Network- based diffusion analysis (NBDA)

All forms of NBDA can be generalized in the following form:

 ( )( ) ( ) ( ) ( )t t z t s a z t A1 ,i i i j j
j

N

0
1

λ λ= − +
=

e o/ , 5.1.1

where li (t) is the rate at which individual i acquires the trait at time t; l0(t) is a baseline acquisition 
function determining the distribution of latencies to acquisition in the absence of social transmis-
sion; zi (t) gives the status (1 = informed, 0 = naïve) of individual i at time t; ai,j gives the network 
connection, or association, between i and j; s is a fitted parameter determining the relative strength 
of social transmission; and the predetermined form of A determines whether asocial learning of the 
trait is assumed to occur.

The (1 - zi (t)) and zj (t) terms ensures that the trait is only transmitted between informed and 
uninformed individuals. The model assumes that the rate of transmission between such individuals 
is proportional to the connection between them, and this rate is scaled by the parameter s. Social 
transmission is inferred if a model including s is better (see box 5.3) than a model where s = 0. One 
strategy for doing this is to compare a model of “pure” social transmission, where all acquisition is 
through social transmission (A = 0) with a model of asocial learning (s = 0, A = 1) (Franz and Nunn 
2009). However, this only works if the analysis starts with informed individuals in the group (e.g., 
trained demonstrators). An alternative strategy is to assume there is always the chance that an indi-
vidual can acquire the trait asocially. In this case, the most intuitive way to parameterize the model 
is to set A = 11. This means that s gives the rate of social transmission relative to the rate of asocial 
acquisition. We prefer this approach, and henceforth replace A with 1.

The difference between TADA and OADA is the way in which the baseline rate function, l0(t), is 
treated. In OADA, l0(t) is unspecified, with the assumption that it is the same for all individuals being 
modeled, whereas in TADA, l0(t) takes a specified form that is fitted to the data.2 In both cases, the 
expression given in equation 5.1.1 leads to a likelihood function (L), which gives the probability of 
observing the data under the model, given a specific set of parameters, and allowing the model to 
be fitted by maximum likelihood.3 The log- likelihood for OADA is:

 ( ) ( ( )) ( ) (1 ( )) ( )log log logL R t z t z t R t
11 10

i l i l i l
i

N

l

D

i l
i

N

l

D

1 1 1= − −− −
==

−
==
c m// // , 5.1.2

where D is the number of acquisition events observed (where one or more individuals are observed 
to acquire the trait), Ri (t) is the relative rate of acquisition ( li(t)/l0(t)), and tl is the time immediately 
after the lth acquisition event (after zi (t)’s are updated). The relative rate of acquisition is used here 
because the baseline rate function cancels out of the likelihood function. zi (tl )(1 - zi (tl  – 1)) indicates 
whether i acquired the trait at the lth acquisition event.

1 We have previously (Hoppitt, Boogert, and Laland 2010) suggested a bounded paramterization for s, where one sets A = 1 - s. 
This means that s can range between 0 (all asocial acquisition) and 1 (all social tranmission). However, we now suggest that this 
paramterization is more difficult to interpret when individual- level variables are included (box 5.2).

2 NBDA can be seen as a specialized version of survival analysis (or “event- history analysis”), with OADA being equivalent to a 
modified Cox proportional hazards model, and TADA being equivalent to a parametric model (Cox and Oakes 1984). In survival analy-
sis, li(t) is referred to as the “hazard function” and l0(t) as the “baseline hazard function.” However, in the context of NBDA, we feel “rate 
of acquisition function” and “baseline rate function” are more intuitive terms.

3  An optimization algorithm is run to find the set of parameter values that maximizes the likelihood, or equivalently, minimizes 
the negative log- likelihood. 

Hoppitt_FINAL.indb   110 4/29/13   12:13 PM



 Statistical Methods for Diffusion Data 111

In the original forms of TADA (Franz and Nunn 2009; Hoppitt, Boogert, and Laland 2010), it is as-
sumed that the baseline rate function is constant ( l0(t) = l0 ). However, Hoppitt, Kandler, et al. (2010) 
found that TADA is susceptible to false positives in the same circumstances as diffusion curve analysis, 
and suggested fitting a baseline rate function that allowed for systematic changes over time. Hoppitt, 
Kandler, et al. (2010) suggest a function corresponding to a gamma distribution of times, under aso-
cial conditions, though here we note a Weibull distribution is commonly used in survival analysis, and 
might also work well for NBDA. In principle, any function can be used so long as the user can provide 
the “hazard function” l0(t), and “cumulative hazard function” L0(t). For many distributions, these func-
tions are readily available in the R statistical environment (R Core Development Team, 2011).

The user may also choose whether to treat time as a continuous variable (continuous TADA) 
(Hoppitt, Boogert, and Laland 2010), or to divide time into a number of discrete steps of equal (Franz 
and Nunn 2009) or unequal (Hoppitt, Kandler, et al. 2010) length, specifying which step each indi-
vidual acquired the behavior (discrete TADA).

The negative log- likelihood for the continuous TADA with a constant baseline rate function is:
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. 5.1.3

This can be generalized for a nonconstant baseline rate to give:4
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, 5.1.4

where tend is the time at which observation ceased (allowing for individuals who did not acquire 
the trait during the period of observation), and L0(t) is the baseline cumulative hazard, in survival 
analysis terminology, which is related to the cumulative distribution function of the asocial latency 
distribution, F0(t), thus:

 (1 )( ) ( )log Ft t00Λ =− − . 5.1.5

Note that if l0(t) = l0, L0(t) = l0t, equation 5.1.4 reduces to 5.1.3.
For a discrete TADA, the data is provided in P discrete time steps, for which the time step in which 

each individual acquired the behavior is known. The log- likelihood is as follows:5

4 The middle term here is ( ) ( ( ( )) ( ( )))log logz t R t t
i

N

i l i l l
D

l 1 011
λ+−==

//  for any individual who is naïve at time tl 1- . Here we modify it 
such that this component is zero for any individual who is informed at time tl 1- , avoiding numerical errors arising from ( )log 0 3=− ,  
since ( ) 0R ti l 1 =−  for such individuals.

5 The zi(tstart,p ) term here ensures that the likelihood is zero for individuals who are informed at the start of period p, since 
Ri(tstart,p ) = 0 for such individuals.

(continued)
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can check this by calculating the proportion of time units in which individuals are 
observed performing the trait following the time unit when their performance was 
initially observed. In �gure 5.2 we provide a �owchart to aid the choice of NBDA 
method, between OADA, continuous TADA, and discrete TADA. Box 5.1 provides 
technical details on the di�erent types of NBDA, and how each is �tted to the data.

5.2.1 Inclusion of individual- level variables

A potential problem with NBDA is that false positives for social transmission can 
arise if individuals prefer to associate with others who have a similar asocial rate 
of acquisition (Hoppitt, Boogert, and Laland 2010). For example, higher- ranking 
individuals might acquire a trait at a higher rate asocially, and also disproportion-
ately associate with each other, making it appear that the trait is being transmitted 
among them. As in other statistical models, a researcher can control for the e�ect 
of such confounding variables by including them in the model (Hoppitt, Boogert, 
and Laland 2010; Shipley 1999). �ere are good reasons for doing this, because 
even when a variable is not confounded with the social network, statistical power 
to detect social transmission can be improved by accounting for the variables’ ef-
fects (Hoppitt, Boogert, and Laland 2010). In addition, it will o�en be of interest 
which variables in�uence the di�usion dynamics (e.g., Boogert et al. 2008).

Hoppitt, Boogert, and Laland (2010) extended NBDA to include such 
“individual- level variables” a�ecting the rate of asocial learning. �ey recognize 
two ways in which individual- level variables might be incorporated into the 

Box 5.1  (continued)
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where tstart,p is the start of time period p, and tend,p is the end of time period p. For l0(t) = l0 this 
reduces to:
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With time steps of equal length, this is equivalent to the model initially proposed by Franz and Nunn 
(2009), with their parameter t, the rate of learning per time step, given by t = l0 sT, where T is the 
length of time step. Note that the discrete TADA assumes that individuals who acquire the trait in 
the same time step do not learn from each other, so this may provide a conservative estimate of the 
rate of social transmission.
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model. �e additive model assumes that the absolute di�erence in the rate of 
acquisition between any two individuals remains constant, for any level of social 
transmission. �e multiplicative model instead assumes that the ratio in the rate 
of acquisition between any two individuals remains constant for any level of so-
cial transmission (see �g. 5.3 and box 5.2).2

2 Previously we have suggested that a best �t of the additive model might indicate direct social learning 
mechanisms, and a best �t of the multiplicative model might indicate indirect mechanisms (see chapter 4; 
Hoppitt, Boogert, and Laland 2010). However, simulations using algorithms representing either direct or 
indirect mechanisms (similar to those used in Hoppitt and Laland 2011) did not support this distinction. 
Researchers should let their data decide whether the additive or multiplicative assumption is most appro-
priate, or �t a more general model (see box 5.2).

Box 5.2 
Inclusion of individual level variables in NBDA

In general, we can expand NBDA generally to include V continuous individual level variables as follows:
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, 5.2.1

where ( ) ( ) ( )t t R t0i iλ λ= , xk, i is the value of the kth variable for individual i; bk is the coefficient giving 
the effect of variable k on asocial learning; and gk is the coefficient giving the effect of variable k on 
the rate of social transmission. This general formulation allows the effects of individual level variables 
on asocial learning and social transmission to differ. In principle, these variables can be fitted in an 
unconstrained way; alternatively one can fit the additive model defined by Hoppitt, Boogert, and 
Laland (2010) by constraining gk = 0 for all k, or the multiplicative model by constraining gk = bk for all 
k. Categorical variables, or factors, with F levels can be fitted by defining F - 1 indicator variables de-
termining which category each individual lies in, in the same way as for a standard regression analysis 
(e.g., see Weissberg 2005). The log- likelihood functions given in box 5.1 remain appropriate.

Interpretation of effects requires some explanation. For individual- level variables, bk gives the ad-
ditive effect of an increase of one unit of variable k on the log scale, so exp( bk ) gives the multiplicative 
effect on the rate of acquisition (this is the same as for most standard survival analyses). For example, 
if we find a coefficient of 1 per cm of body length, this means that, all other things being equal, the 
model would predict that if an individual A is 1 cm longer than another individual B, and then A would 
asocially acquire the trait at a rate 2.7 times faster than B.

In contrast, social transmission is modeled as a linear effect, such that it gives the rate of social 
transmission per unit of connection to informed individuals. In the additive model, this is relative to the 
baseline level of asocial acquisition (i.e., when Bi = 0. We suggest researchers standardize any continu-
ous variables (subtract the mean, then divide by the standard deviation), meaning s can be interpreted 
as the rate of social transmission relative to the average rate of asocial acquisition. If factors are included 
in the analysis, s is relative to the asocial rate for an individual at the baseline level, for each factor. In the 
multiplicative model, s is invariant to the scale of the individual- level variables (see fig. 5.3).
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5.2.2 Model selection and inference

To test for social transmission, a researcher must compare a model containing 
social transmission (henceforth a social model) with a model not containing so-
cial transmission (an asocial model3). However, in each case the researcher must 
decide (i) whether to include a constant or nonconstant baseline function (if 
they wish to employ TADA), (ii) which individual- level variables to include in 
each model, and (iii) whether to consider an additive or multiplicative model of 
social transmission. Model selection for NBDA is directly analogous to model 
selection for a general linear model, and so the same methods can be used. We 
favor an information theoretic approach (Burnham and Anderson 2002), since 
in many cases the best asocial model might not be nested in the best model that 
includes social transmission, meaning that a classical hypothesis test such as a 
likelihood ratio test (LRT) cannot be used. For example, the best asocial model 
might include a nonconstant baseline (accounting for an acceleratory spread of 
the trait), whereas the best social model might have a constant baseline function, 

3 We note in passing that it is possible for di�usions that are well described by asocial models to reveal 
evidence for social learning, but not social transmission (Atton et al., 2012). �is prima facie surprising 
observation re�ects the breadth of the de�nition of social learning, which allows for forms of social in�u-
ence on learning that do not qualify as social transmission.
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Figure 5.3. A graphical depiction of (A) the additive 
NBDA and (B) multiplicative NBDA, showing the 
rate of trait acquisition for two individuals (that dif-
fer in their asocial rate of acquisition) as a function 
of the total connection to informed individuals. At 
the extreme left of the range, individuals spend no 
time with any informed individuals, whereas at the 
extreme right, individuals are extremely well con-
nected to those who have acquired the trait. When 
unconnected to informed individuals, acquisition 
is by asocial learning; for all other cases, the rate of 
acquisition is a combination of social transmission 
and asocial learning. For both (A) and (B), the aso-
cial rate of acquisition for individual A (solid line) 
is double that for individual B (dashed line). In the 
additive model, the absolute difference in the rate 
of acquisition remains constant as the total connec-
tion increases, whereas in the multiplicative model, 
the ratio between the two remains constant. Based 
on figure 1 in Hoppitt and Laland (2011).
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with social transmission providing an alternative explanation for the accelera-
tory e�ect. In such cases a hypothesis test cannot be used, and thus information 
theoretic approaches come into their own. In addition, information theoretic ap-
proaches enable a researcher to use a model averaging approach, which allows 
taking into account model selection uncertainty (see box 5.3).

We suggest �tting models containing every combination of individual- level 
variables the researcher wishes to consider, with both a constant and noncon-
stant baseline rate, for an asocial model, additive social model, and multiplicative 
social model. In each case, the relative support for each individual model can be 
judged using Akaike’s Information Criterion (AIC), or in practice, AICc, which 
is corrected for sample size (see box 5.3). �ese criteria assess each model based 
on how well they �t the data, a�er penalizing for the number of parameters used, 
with smaller values indicating that a model has greater predictive power. �e 
models can then be ranked according to AICc, and the support for each model, 
or Akaike weight, is calculated from the di�erence in AICc from the best model 
(this procedure is implemented automatically in the R code provided at http://
lalandlab.st- andrews.ac.uk/freeware.html).

�e evidence for or against social transmission can be assessed by the total 
Akaike weights for models including social transmission and asocial models. To 
make this a fair comparison we suggest that a three- way4 comparison be made 
between the asocial models, and the additive and multiplicative models of social 
transmission. �e model with the greatest total Akaike weights is the one best 
supported by the data. �e di�erence in weight between this and the other mod-
els indicates the level of support.5

Model averaging methods (box 5.3) enable researchers to estimate the strength 
of social transmission, and to calculate con�dence intervals in a way that allows 
for model selection uncertainty (Burnham and Anderson 2002). Con�dence in-
tervals are especially important in cases where there is little support either way 
for or against social transmission, because they allow a researcher to set an upper 
plausible limit for the strength of social transmission. �is might enable the re-
searcher to make the stronger conclusion that social transmission is unlikely to 
be important in the acquisition of a trait.

5.2.3 Modeling multiple diffusions

Sometimes a researcher might have access to data from multiple di�usions, either 
a single trait spreading through multiple groups, or the spread of multiple traits 
through one or more groups. It might be preferable to include these in a single 

4 A two- way comparison between asocial models and models containing social transmission is not 
a fair comparison if twice as many of the latter are considered. For the same reason, more comparisons 
should be made, if additional models of social transmission are considered (see section 5.2.4).

5 If the asocial model has an only slightly lower Akaike weight, this means that there is not strong evi-
dence for social transmission. However, it would not make sense for researchers to “reject” social transmis-
sion on grounds of parsimony under such circumstances, since the Akaike weights already factor in model 
complexity when quantifying the level of support.
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statistical model, in order to improve the power to detect social transmission 
and/or allow comparison between groups. For example, researchers may wish to 
test whether the rate of social transmission is higher in one context than another. 
�is can be done using NBDA, although the exact inference can vary depending 
on which version of NBDA is �tted, and how. In addition, for the model to be 
meaningful, the social networks for each di�usion must be of the same type in 
each case (see below).

One option is to �t an OADA, assuming a separate baseline rate function, for 
each di�usion (see box 5.4). Here, minimal assumptions are made, and social 

Box 5.3 
Akaike’s information criterion (AIC)

Akaike’s Information Criterion (AIC) provides a means to compare the fit of different statistical mod-
els that are fitted to the same data. Unlike p values, AIC can be used to compare models that are 
not nested (i.e., when one model is not a constrained version of another). A full description of the 
theoretical basis for AIC, and a guide to its use are provided by Burnham and Anderson (2002). Here 
we give a brief summary.

Akaike’s Information Criterion is calculated from the log- likelihood for the model (L), where the 
model parameters have been optimized by maximum likelihood (e.g., see box 5.1):

 2 2AIC L k=− +

where k is the number of parameters in the model. A version of AIC is also available that corrects for 
sample size:

 2 2
1

2 ( 1)AIC L k
n k
k k

c =− + +
− −

+ .

This should be used unless the sample size is large (in which case there will be little difference).
Models with lower AIC explain the model better after appropriately penalizing for the number of 

parameters in the model. The degree to which additional parameters are penalized is not arbitrary, 
since the difference in AIC between any two models fitted to the same data estimates the difference 
in Kullback- Leibler (K- L) information for the two models. K- L information measures the extent to 
which the predicted distribution for the dependent variable differs from its true distribution (i.e., the 
information lost when moving from the true distribution to the model).

Note that AIC only gives a measure of the relative fit of candidate models, not a measure of 
absolute fit, so it is the absolute di�erence in AIC that determines the relative performance of two 
models. Given a set of R candidate models, a researcher can obtain a relative measure of support for 
each model i by calculating the Akaike weights:
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where D i gives the difference in AIC between model i and the best model in the set; wi can be 
thought of as the probability the i is the model with best K- L information in the set, accounting for 
sampling error.
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learning is inferred purely from whether the order of acquisition tends to fol-
low the network in each di�usion. Researchers cannot compare whether the 
rate of acquisition varies between di�usions, and so can only test for whether 
individual- level variables have an e�ect if they vary with di�usions. It is pos-
sible to test for di�erences in the relative rate of social transmission (per unit 
of network strength), but statistical power may be lower than using alternative 
methods.

Conversely, TADA is sensitive to the times at which individuals in each group 
acquire the trait(s), as well as the order they learn. �erefore, if all individuals 

One can obtain measures of support for various features of the model, such as the presence 
of a variable, by summing Akaike weights over those models that include that feature. For exam-
ple, imagine we run an NBDA with size as an individual- level variable, also considering a number 
of other individual- level variables, as well as additive, multiplicative, and asocial versions of the 
model. We get a measure of support for an effect of size by summing the Akaike weights of models 
that include size as a variable. This gives the probability that size is in the model with the best K- L 
information of those considered, after accounting for sampling variation. The same process could 
be used to compare different models of social learning with each other, and with models of asocial 
learning.

AIC also gives us a method of estimating parameter values that is not subject to the same prob-
lems as traditional model selection procedures. The traditional method is to select a “best” model, 
perhaps based on adjusted R- squared, AIC, or stepwise approaches using p values and an arbitrary 
significance level. Inferences are then based on the best model (i.e., they are conditional on that 
model being true). Such approaches do not take into account the uncertainty in the model selec-
tion procedure (i.e., which is really the best model). An alternative is to use a model- averaging 
procedure, which uses all the models considered to estimate parameter values, but the contribution 
of each is weighted by its Akaike weight. One obtains a model- averaged estimate qrt  for a parameter 
q as follows:

 w
1

i i
i

R

θ θ=
=

rt t/

where iq
t  is the maximum likelihood estimator for q for model i.1

Traditional measures of the precision of a parameter estimate, standard errors, and confidence 
intervals are also conditional on the final model being correct. There are additional methods for 
adjusting measures of precision such that they take into account model selection uncertainty, yield-
ing unconditional standard errors and confidence intervals.2 For details, see Burnham and Anderson 
(2002, 153–167).

1 It may sometimes be desirable to conduct model- averaging across only those models in which the parameter is present, in other 
cases it may make sense to take the value of the parameter to be zero in such models. See Burnham and Anderson (2002, 150–153) for 
details.

2 Though they are still conditional on the set of models considered.
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